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• Lattice	QCD	calculation	can	apply	to	the	exclusive	modes:		
			fπ,	fK:	K	->π		
•	How	about	inclusive	hadronic	decay?	
			We	use	τ	inclusive	Kaon	decay	experiments	->		|Vus|	determination		

• Using	optical	theorem	and	dispersion	relation,		
			τ	decay	differential	cross	section		
		(τ	hadronic	decay/τ	leptonic	decay)	
		and	the	hadronic	vacuum	polarization		
		(HVP)	function	are	related.	
		->	We	can	use	lattice	HVP	calculations.

Intruduction



• From	unitarity	of	S	matrix,	invariant	matrix	elements	are	related	to	the	
total	scattering	cross	section	σ		

• Using	analytic	of	M(s)	for		
and	above	multi	particles	threshold	
a	branch	cut	is	formed,	then	

• Im	M	for	s0	<	s	<	sth	is	read	off	from	experimental	result.
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τ	→	ν	+	hadrons	decay	through	V-A	current	(weak	decay)	
For	the	final	states	with	strangeness	-1,		
R	ratio(hadron/lepton)	is	given	in	terms	of	CKM	matrix		
elements	Vus	and	hadron	vacuum	polarization	functions,		

The	spin	0,	and	1,	hadronic	vacuum	polarization,	V/A	current-current	

Tau	decay	experiment
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Determination of |Vus| from lattice HVP and

experimental hadronic τ decay

1 Preliminary

For SM hadronic τ decays, a derivative of the ratio Rij;V/A of the decay width into states
produced hadronic V and A currents with i, j flavors to the electron decay width,

Rij;V/A ≡ Γ[τ− → ντHij;V/A(γ)]/Γ[τ
− → ντe

−ν̄e(γ)] (1)

is related to the spectral functions ρ(J)ij;V/A with the spin J = 0, 1 by

dRij;V/A

ds
=

12π2|Vij|2SEW

m2
τ

(1− yτ)
2
[

(1 + 2yτ )ρ
0+1
ij;V/A(s)− 2yτρ

0
ij;V/A(s)

]

, (2)

where yτ = s/m2
τ , SEW is a known short-distance electroweak conrrection. Fig. 1 repre-

sents hadronic τ decays. The spectal function is defined as ρ(J)ij;V/A(s) =
1
π ImΠ(J)

ij;V/A(−s),

where Π(J)
ij;V/A(−s) is computed from the usual flavor ij vector (V) or axial vector (A)

current-current two-point functions;
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(0)
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2), (3)

where Jµ
ij;V/A are the V/A currents with flavor ij.

The |Vus| extraction uses an analysis of the us two-point function. From Eq. (2), it
shows that the experimental data of dRus;V/A/ds fixes the |Vus|2 and the spectral function
combination

(
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s

m2
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)

ImΠ(1)(s) + ImΠ(0)(s). (4)

The experimental situation for the inclusive τ decays is shown in 1. The current status
of |Vus| determination can be found in HFAG-tau summary (See Fig. 2). For the Kaon
pole contribution, we assume a simple delta function form as
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2
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Previous	study		

|Vus|	determination		
from	finite	energy	sum	rule



• The	finite	energy	sum	rule	(FESR)	

S0	…	finite	energy,		
w(s)	is	an	arbitrary	analytic	function	with		polynomial	in	s.	
			
• LHS	…	ρ(s)	is	related	to	the	experimental	τ	inclusive	decays		

• RHS	…	Analytic	calculation		
with	perturbative	QCD	(pQCD)	and	OPE	
(s0	should	be	large	enough)

Finite	energy	sum	rule

Lattice determination of |Vus| with inclusive hadronic τ decay experiment†

T. Izubuchi,∗1 ∗2 H. Ohki,∗2

The Kobayashi-Maskawa matrix element |Vus| is an
important parameter for flavor physics, which is rele-
vant to the search for new physics beyond the standard
model in particle physics. So far |Vus| has been most
precisely determined by kaon decay experiments. As
an alternative way, from the τ decay, one can also de-
termine |Vus| independently. A conventional method
is to use the so-called finite energy sum rule with poly-
nomial weight function ω(s) and the spectral function

ρ(J)V/A with the spin J = 0, 1 as

∫ s0

0
ω(s)ρ(s)ds = − 1

2πi

∮

|s|=s0

ω(s)Π(s)ds, (1)

where Π(s) is a hadronic vacuum polarization(HVP)
function. Here, ρ(s) on the left hand side is related
to the differential decay of the τ decay by hadronic V
and A currents with u, s flavors as

dRus;V/A

ds
=

12π2|Vus|2SEW

m2
τ

(1− yτ )
2 (2)

×
[
(1 + 2yτρ

(0+1)
us;V/A − 2yτρ

0
us;V/A)

]
,

where yτ = s/m2
τ , SEW is a known short-distance elec-

troweak correction. The HVP function Π(s) on the
right hand side in Eq.(1) is analytically calculated by
using OPE based on perturbative QCD (pQCD). Thus,
the momentum s0 should be taken large enough to use
a perturbative OPE result. By combining both the
inclusive τ decay experiments and pQCD, one can ob-
tain |Vus|. Recent analyses suggest that there is 3 σ
discrepancy between two results from the method that
uses the inclusive τ decay and the CKM unitarity con-
straint. While there might be a possibility that such a
discrepancy could be explained by new physics effect,
we should note that the OPE yields a potential prob-
lematic uncertainty in the |Vus| determination from the
inclusive hadronic τ decay using the finite energy sum
rule a). Thus it is important to reduce the uncertainty
of the QCD part, so that we aim to resolve the so-called
|Vus| puzzule.
In this report, in order for that purpose, we would

like to propose an alternative method to determine
|Vus|, in which we use non-perturbative lattice QCD
results for Π(s) in addition to pQCD. Combing two in-
puts, we would expect that more reliable result could
be obtained. In order to use lattice QCD inputs, we

† All the results shown here are preliminary.
∗1 Physics Department, Brookhaven National Laboratory, Up-

ton, NY 11973, USA
∗2 RIKEN Nishina Center
a) For a recent study of the inclusive τ decay using the finite

energy sum rule, see1).
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Fig. 1. Q2
1 dependence of the ratio of the pQCD to the kaon

pole contribution. For pQCD result, the D = 0 OPE

(Nf = 3) and a conventional value of |Vus| are used.

adopt a different weight function ω(s) which has poles
in the Euclidean momentum region. As an illustra-
tive example, we take a following weight function as
ω(s) = 1

(s+Q2
1)(s+Q2

2)···(s+Q2
N )

, where −Q2
k < 0 (for

k = 1, ..., N), and N ≥ 3. Taking s0 → ∞ in Eq.(1),
we obtain

∫ ∞

0
ρ(s)ω(s)ds =

N∑

k

Res
(
Π(−Q2

k)ω(−Q2
k)
)
. (3)

The lattice result is used for residues on the right hand
side. The left hand side can be evaluated up to s = m2

τ

from the experimental data, and we use a pQCD re-
sult for s > m2

τ . There is an advantage in this method.
Since above weight function ω(s) is highly suppressed
in high momentum region, so the uncertainty coming
from pQCD can be reduced. In fact, Fig. 1 shows the
weight function dependence of the ratio of the OPE
contribution of the spectrum integral in Eq.(3) to the
one from the dominant kaon pole contribution. As
shown in Fig. 1, the OPE contribution can be sup-
pressed by adding poles in the weight function.

As a preliminary study, we calculate |Vus| deter-

mined from ρ(0)A . As for the lattice calculation of ρ(0)A ,
we use L = 48 lattice result near the physical quark
massb). Using a weight function with three poles of
(Q2

1, Q
2
2, Q

2
3) = (0.1, 0.2, 0.3), we obtain 0.3% statisti-

cal relative error, which is competitive with previous
results. As a future work, we need to estimate sys-
tematic uncertainties such as lattice discretization, un-
physical mass, and contributions from other channels,
in particular pQCD effects.

References
1) P. A. Boyle et al. Int. J. Mod. Phys. Conf. Ser.

35, 1460441 (2014) doi:10.1142/S2010194514604414
[arXiv:1312.1716 [hep-ph]].

b) We thank RBC-UKQCD collaboration and Kim Maltman
for providing lattice HVP and experimental data.
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• Inclusive	τ	decay	rates	with	ud	and	s	quark	final	states,		

• Taking	the	differences,		

• Use	perturbative	OPE	with	D	>	2,	since	these	observables	vanish	in	
the	SU(3)	symmetry	limit.		

Many	theoretical	uncertainties	may	drop	out.	

• |Vus|	is	3+σ	lower	than	Kl3,	Kl2	determinations.	

|Vus|	determination	from	FESR
[E.	Gamiz,	et	al.	PRL	94,	011803,	2005]
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Vus and ms from hadronic τ decays

Elvira Gámiz a, Matthias Jamin b, Antonio Pich c, Joaquim Prades d, and Felix Schwab e,f
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Recent experimental results on hadronic τ decays into strange particles by the OPAL collaboration
are employed to determine Vus and ms from moments of the invariant mass distribution. Our
results are Vus = 0.2208 ± 0.0034 and ms(2GeV) = 81 ± 22MeV. The error on Vus is dominated
by experiment, and should be improvable in the future. Nevertheless, already now our result is
competitive to the standard extraction of Vus from Ke3 decays, and it is compatible with unitarity.

PACS numbers: 12.15.Ff, 14.60.Fg, 11.55.Hx, 12.38.Lg

INTRODUCTION

Already more than a decade ago it was realised that
the hadronic decay of the τ lepton could serve as an
ideal system to study low-energy QCD under rather clean
conditions [1]. In the following years, detailed investi-
gations of the τ hadronic width as well as invariant
mass distributions have served to determine the QCD
coupling αs to a precision competitive with the current
world average [2, 3]. The experimental separation of the
Cabibbo-allowed decays and Cabibbo-suppressed modes
into strange particles opened a means to also determine
the mass of the strange quark [4–12], one of the funda-
mental QCD parameters within the Standard Model.

These determinations suffer from large QCD correc-
tions to the contributions of scalar and pseudoscalar cor-
relation functions [1, 12–14] which are additionally am-
plified by the particular weight functions which appear
in the τ sum rule. A natural remedy to circumvent this
problem is to replace the QCD expressions of scalar and
pseudoscalar correlators by corresponding phenomeno-
logical hadronic parametrisations [4, 7, 9, 10, 15], which
turn out to be more precise than their QCD counter-
parts, since the by far dominant contribution stems from
the well known kaon pole.

Additional suppressed contributions to the pseu-
doscalar correlators come from the pion pole as well as
higher exited pseudoscalar states whose parameters have
recently been estimated [16]. The remaining strangeness-
changing scalar spectral function has been extracted from
a study of S-wave Kπ scattering [17, 18] in the framework
of resonance chiral perturbation theory [19]. The result-
ing scalar spectral function was also employed to directly
determine ms from a purely scalar QCD sum rule [20].

Nevertheless, as was already realised in the first
works on strange mass determinations from the Cabibbo-
suppressed τ decays, ms turns out to depend sensitively

on the element Vus of the quark-mixing (CKM) matrix.
With the theoretical improvements in the τ sum rule
mentioned above, in fact Vus represents one of the dom-
inant uncertainties for ms. Thus it appears natural to
actually determine Vus with an input for ms as obtained
from other sources [4].

Very recently, new results on the τ branching fractions
into strange particles have been presented by CLEO [21]
and OPAL [22]. In addition, the OPAL collaboration also
presented an update on the strange spectral function,
previously known only from ALEPH [10]. Both, CLEO
and OPAL found B[τ−→ K−π+π−ντ ] to be significantly
higher than the corresponding ALEPH result. The im-
portant impact of these improved findings on the deter-
mination of Vus and ms will be investigated below.

THEORETICAL FRAMEWORK

The main quantity of interest for the following analysis
is the hadronic decay rate of the τ lepton,

Rτ ≡
Γ[τ− → hadronsντ (γ)]

Γ[τ− → e−ν̄eντ (γ)]
= Rτ,NS + Rτ,S , (1)

which experimentally can be decomposed into a compo-
nent with net-strangeness Rτ,S, and the non-strange part
Rτ,NS. Additional information can be inferred from the
measured invariant mass distribution of the final state
hadrons. The corresponding moments Rkl

τ , defined by [23]

Rkl
τ ≡

M2

τ
∫

0

ds

(

1 −
s

M2
τ

)k( s

M2
τ

)l dRτ

ds
= Rkl

τ,NS + Rkl
τ,S ,

(2)
can be calculated in complete analogy to Rτ = R00

τ . In
the framework of the operator product expansion (OPE),



|
us

|V
0.215 0.22 0.225

 decays, PDG 2013l3K
 0.0014±0.2253 

 decays, PDG 2013l2K
 0.0010±0.2253 

CKM unitarity, PDG 2013
 0.0010±0.2255 

 s inclusive, HFAG 2014→ τ

 0.0021±0.2176 

, HFAG 2014νπ → τ / ν K→ τ

 0.0019±0.2232 

, HFAG 2014ν K→ τ

 0.0020±0.2212 

 average, HFAG 2014τ

 0.0014±0.2204 

HFAG-Tau
Summer 2014

• |Vus|	from	inclusive	τ	decay	->	3	σ	deviation	from	CKM	unitarity	
• pQCD	and	high	order	OPE	->	problematic	uncertainties?



This	work

• So	far	we	do	not	know	if	3σ	discrepancy	may	be	explained																			
by	new	physics	beyond	the	SM.	

• We	would	like	to	propose	an	alternative	method	to	calculate																
|Vus|	from	the	inclusive	τ	decay.	

• By	combing	both	the	lattice	data	and	pQCD,		
			we	could	expect	more	precise	determination	of	|Vus|.	
• As	a	result,	pQCD	uncertainty	can	be	suppressed.		

• We	aim	to	elucidate	a	possible	origin	of	the	so-called	|Vus|	puzzle.	



• Using	a	different	type	of	the	weight	function	w(s)	which	has	residues																		

and	taking	S0	->	∞,		

LHS	…	Experimental	data	and	pQCD		
RHS	…	Lattice	HPVs	Π(Q)	at	Euclidean	momentum	region

Our	strategy
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adopt a different weight function ω(s) which has poles
in the Euclidean momentum region. As an illustra-
tive example, we take a following weight function as
ω(s) = 1

(s+Q2
1)(s+Q2

2)···(s+Q2
N )

, where −Q2
k < 0 (for

k = 1, ..., N), and N ≥ 3. Taking s0 → ∞ in Eq.(1),
we obtain

∫ ∞

0
ρ(s)ω(s)ds =

N∑

k

Res
(
Π(−Q2

k)ω(−Q2
k)
)
. (3)

The lattice result is used for residues on the right hand
side. The left hand side can be evaluated up to s = m2

τ

from the experimental data, and we use a pQCD re-
sult for s > m2

τ . There is an advantage in this method.
Since above weight function ω(s) is highly suppressed
in high momentum region, so the uncertainty coming
from pQCD can be reduced. In fact, Fig. 1 shows the
weight function dependence of the ratio of the OPE
contribution of the spectrum integral in Eq.(3) to the
one from the dominant kaon pole contribution. As
shown in Fig. 1, the OPE contribution can be sup-
pressed by adding poles in the weight function.

As a preliminary study, we calculate |Vus| deter-

mined from ρ(0)A . As for the lattice calculation of ρ(0)A ,
we use L = 48 lattice result near the physical quark
massb). Using a weight function with three poles of
(Q2

1, Q
2
2, Q

2
3) = (0.1, 0.2, 0.3), we obtain 0.3% statisti-

cal relative error, which is competitive with previous
results. As a future work, we need to estimate sys-
tematic uncertainties such as lattice discretization, un-
physical mass, and contributions from other channels,
in particular pQCD effects.
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Lattice determination of |Vus| with inclusive hadronic τ decay experiment†

T. Izubuchi,∗1 ∗2 H. Ohki,∗2
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2πi

∮

|s|=s0

ω(s)Π(s)ds, (1)

where Π(s) is a hadronic vacuum polarization(HVP)
function. Here, ρ(s) on the left hand side is related
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and A currents with u, s flavors as

dRus;V/A

ds
=

12π2|Vus|2SEW

m2
τ

(1− yτ )
2 (2)

×
[
(1 + 2yτρ

(0+1)
us;V/A − 2yτρ

0
us;V/A)

]
,

where yτ = s/m2
τ , SEW is a known short-distance elec-

troweak correction. The HVP function Π(s) on the
right hand side in Eq.(1) is analytically calculated by
using OPE based on perturbative QCD (pQCD). Thus,
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a perturbative OPE result. By combining both the
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In this report, in order for that purpose, we would

like to propose an alternative method to determine
|Vus|, in which we use non-perturbative lattice QCD
results for Π(s) in addition to pQCD. Combing two in-
puts, we would expect that more reliable result could
be obtained. In order to use lattice QCD inputs, we

† All the results shown here are preliminary.
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∗2 RIKEN Nishina Center
a) For a recent study of the inclusive τ decay using the finite

energy sum rule, see1).
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τ	inclusive	decay	experiment

For	K	pole,	we	assume	a	delta	function	form	with	kaon	decay	experiments,		

Determination of |Vus| from lattice HVP and

experimental hadronic τ decay

1 Preliminary

For SM hadronic τ decays, a derivative of the ratio Rij;V/A of the decay width into states
produced hadronic V and A currents with i, j flavors to the electron decay width,

Rij;V/A ≡ Γ[τ− → ντHij;V/A(γ)]/Γ[τ
− → ντe

−ν̄e(γ)] (1)

is related to the spectral functions ρ(J)ij;V/A with the spin J = 0, 1 by

dRij;V/A

ds
=

12π2|Vij|2SEW

m2
τ

(1− yτ)
2
[

(1 + 2yτ )ρ
0+1
ij;V/A(s)− 2yτρ

0
ij;V/A(s)

]

, (2)

where yτ = s/m2
τ , SEW is a known short-distance electroweak conrrection. Fig. 1 repre-

sents hadronic τ decays. The spectal function is defined as ρ(J)ij;V/A(s) =
1
π ImΠ(J)

ij;V/A(−s),

where Π(J)
ij;V/A(−s) is computed from the usual flavor ij vector (V) or axial vector (A)

current-current two-point functions;

Π(µν)
ij;V/A(q

2) ≡i

∫

d4xeiqx⟨0|T
(

Jµ
ij;V/A(x)J

†ν
ij;V/A(0)

)

|0⟩

=(qµqν − q2gµν)Π(1)
ij;V/A(Q

2) + qµqνΠ
(0)
ij;V/A(Q

2), (3)

where Jµ
ij;V/A are the V/A currents with flavor ij.

The |Vus| extraction uses an analysis of the us two-point function. From Eq. (2), it
shows that the experimental data of dRus;V/A/ds fixes the |Vus|2 and the spectral function
combination

(

1 + 2
s

m2
τ

)

ImΠ(1)(s) + ImΠ(0)(s). (4)

The experimental situation for the inclusive τ decays is shown in 1. The current status
of |Vus| determination can be found in HFAG-tau summary (See Fig. 2). For the Kaon
pole contribution, we assume a simple delta function form as

|Vus|
2

[(

1 + 2
s

m2
τ

)

ImΠ(1)(s) + ImΠ(0)(s)

]

= δ(s−m2
k)0.0012299(46). (5)

1

|Vus|2
✓

1 + 2
s

m2
⌧

◆
Im⇧1(s) + Im⇧0(s)

�

To	compare	with	experiments,		

a	conventional	value	of		|Vus|=0.2253	is	used



• we	use	pole-type	weight	function;		

																												(Number	of	poles:	N)	

For	convergence	of	contour	integral,			
a	weight	function	with	N	≧	3	is	required,	which	suppresses		

			large	error	from	higher	multi	hadron	final	states	at	s	>	mk^2	
			contributions	from	pQCD	with	OPE	at	s	>	mτ^2	

For	lattice	HVPs,		
Q^2	values	should	not	be	too	small	to	avoid	finite	size(time)	effect,		
and	not	to	be	large	to	avoid	large	discretization	error.

Weight	function

!(s) =
NY

k

1

(s+Q2
k)

, (Q2
k > 0)
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Lattice	HVPs
HVPs	from	V/A	current-current	correlation	functions	with	u	s	flavors,		

we	consider	zero-spatial	momentum	

2 Lattice-experimental analysis

Using the analyticity properties of the spectral function Π(s), we can obtain a relation
between experiments dRus;V/A/ds, (s > 0) and the lattice inputs of hadronic vacuum
polarization fucntion Π(Q2) in Euclidean (space-like) points (s = −Q2 < 0) as follows,

1

2πi

∮

C

dsΠ(s)ω(s) =
∑

k

Π(−Q2
k)Res

(

ω(−Q2
k)
)

, (6)

where Π(s) ≡
[(

1 + 2 s
m2

τ

)

Π(1)(s) + Π(0)(s)
]

, and ω(s) is a weight function having poles

at a set of Euclidean Q2
k (s = −Q2

k < 0). As a simple form of a weight function, we would
like to take

ω(s) =
1

ΠN
k=1(s+Q2

k)
. (7)

The number of poles N then should be taken as N > 2, which is needed for convergence
of any kind of contour integrals. Thus we obtain a relation

∫ ∞

sth

dsρ(s)ω(s) =
∑

k

Π(Q2
k)

Πj ̸=k(Q2
j −Q2

k)
(8)

The LHS of this equation is determined by ρ(s) = 1
π ImΠ(−s), which can be evaluated up

to s = m2
τ , with unknown factor |Vus|2 from the experimental results of dRus;V/A/ds . The

RHS is a sum over the values of the HVPs with known test function ω(s) at s = −Q2
k.

(See Fig. 3). Hereafter we simply denote the sum of residues as

∑

k

Π(Q2
k)

Πj ̸=k(Q2
j −Q2

k)
≡ Res (Πω) . (9)

One aim to understand what sort of choice will optimize the lattice and experimental
errors and obtain a precise value of |Vus|. Above experimental region (s > m2

τ ), one have
to use a pQCD result to evaluate the LHS.

3 Lattice hadronic vacuum polarization function

The data set used for calculations of the lattice HVPs are tabulated in table.1.
The hadronic vacuum polarization function is calculated in the configuration space.

We use its zero spatial momentum components as

ΠV/A
µν (t) =

1

V

∑

x⃗

⟨JV/A
µ (x⃗, t)JV/A

ν (x⃗, 0)⟩. (10)

HPVs in the momentum-space are following structure

Πµν(q) = (q2δµν − qµqν)Π
(1)(q2) + qµqνΠ

(0)(q2), (11)
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discrete	Fourier	transformation,		

(direct	double	subtraction,	sine	cardinal	Fourier	transformation.)

sth

Figure 3: Schematic picture of the analysis (Eq.8).

L T ml mh mπ[GeV] mK [GeV] a−1[GeV] ZV ZA

24I-1 24 64 0.005 0.03 0.3398 0.5325 1.785(5) 0.7019(26) 0.7016(27)
24I-2 24 64 0.005 0.04 0.3398 0.5934 1.785(5) 0.7019(26) 0.7016(27)
32I-11 32 64 0.004 0.025 0.3025 0.5366 2.383(9) 0.7396(17) 0.7396(17)
32I-12 32 64 0.004 0.03 0.3025 0.5791 2.383(9) 0.7396(17) 0.7396(17)
32I-21 32 64 0.006 0.025 0.3603 0.5544 2.383(9) 0.7396(17) 0.7396(17)
32I-22 32 64 0.006 0.03 0.3603 0.5957 2.383(9) 0.7396(17) 0.7396(17)
48I 48 96 0.00078 0.0362 0.1392 0.4992 1.7295(40) 0.71075(25) 0.71075(5)
48I (PQ) 48 96 0.0006979 0.0358 0.135† 0.4937† 1.7295(40) 0.71075(25) 0.71075(5)
64I 64 128 0.000678 0.02661 0.1393 0.5079 2.359(7) 0.74293(14) 0.74341(5)

Table 1: Summary of lattice data set and parameters. The results of mK are taken from
Ref. [1]. The 48I (PQ) is a partially quenched corrected mass data, where the masses of
mπ and mK are the same as the physical ones (indicated as †).

On the lattice, those in the momentum-space with subtraction of unphysical zero-mode
can be obtained by discrete Fourier transformation,

Π̂(q2) =
t=T/2−1
∑

t=−T/2

(

eiq̃t − 1

q2
+

t2

2

)

Π(t), (12)

where q̃ is the lattice momenta which satisfies the vector Ward identity,

q̃µ = 2 sin (qµ/2). (13)

Thus the spin J = 0, 1 components are evaluated as Π̂(0)(q2) = Π̂tt(q2), and Π̂(1)(t) =
1
3

∑

i=x,y,z Π̂ii(t)1. The HVPs for each lattice are summarized in Fig. 4.

3.1 MK and FK

Using Π(0):A(t), we can extract the mass (mK) and decay constant (FK). Here we use

Π(0):A(t)sym = 1
2

(

Π(0):A(t) + Π(0):A(T − t)
)

. We plot the effective mass for Π(0):A
sym (t) in

1Note that in the denominator of Eq. (12), I use not q̃2 but q2. This may be a difference from Jamie’s
analysis.
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lattice	QCD	ensemble	and	parameters

Vol. a�1
[GeV] m⇡[GeV] mK [GeV] stat.

24

3 ⇥ 64 1.785(5) 0.340 0.533 450

0.340 0.593 450

32

3 ⇥ 64 2.383(9) 0.303 0.537 372

0.303 0.579 372

0.360 0.554 207

0.360 0.596 207

48

3 ⇥ 96 1.730(4) 0.139 0.499 4224

0.135

†
0.4937

†
5 PQ-correction, (4224)

64

3 ⇥ 128 2.359(7) 0.139 0.508 2560

• Our	main	analysis	is	done	on	L=48	and	64,		
			at	almost	physical	quark	mass	region,	L=5	fm.		
• PQ-correction:	partially	quench	(PQ)	corrected	HVP	data	at	the	physical	point	(†)		
• L=24	and	32	have	heavier	kaon	masses,	which	will	be	used		
to	see	general	tendency.

2+1	flavor	domain-wall	fermion	gauge	ensemble	generated	by	RBC-UKQCD	

•



Lattice	HVPs	and	inclusive	τ	decay
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A	systematic	study	of	weight	function	dependence	

L T Fit range amK am(∗)
K aFK aF (∗)

K

24I-1 24 64 10-32 0.2984(11) 0.29833(54) 0.0940(12) 0.09347(39)
24I-2 24 64 10-32 0.3324(12) 0.33245(55) 0.0969(12) 0.09632(41)
32I-11 32 64 10-32 0.2238(12) 0.22518(37) 0.0692(10) 0.06969(32)
32I-12 32 64 10-32 0.2415(12) 0.24301(39) 0.07066(99) 0.07112(33)
32I-21 32 64 10-32 0.2335(14) 0.23266(25) 0.0699(14) 0.07113(31)
32I-22 32 64 10-32 0.2507(14) 0.24999(26) 0.0715(14) 0.07254(32)
48I 48 96 10-48 0.28843(31) 0.28853(14) 0.09019(21) 0.090396(86)
48I (PQ) 48 96 10-48 0.28643(73) 0.285439(8)(†) 0.09026(25) 0.08992(48)(†)

64I 64 128 10-64 0.21548(28) 0.21531(17) 0.06661(16) 0.066534(99)

Table 2: Results of mK and FK from Π(0):A(t). For reference, the results given in [1] are
also shown, which are indicated with (∗). For PQ data, the experimental data are also
shown as indicated with (†).

Q2
2 = 0.2, Q2
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4 = 0.4 fixed. As shown in the figure, the pQCD contribution with

a weight function for 4 poles is suppressed than the one for 3 poles. The ration of each
contribution is shown in Fig. 7.
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Figure 6: Spectrum integral for each channel as a function of Q2
1. (Left) A weight func-

tion with 3 poles of {Q2
2, Q

2
3} = {0.2, 0.3}. (Right) A weight function with 4 poles of

{Q2
2, Q

2
3, Q

2
4} = {0.2, 0.3, 0.4}. For the pQCD result, a conventional value of |Vus| = 0.2253

is used.

In Fig. 8, we show the ratio of each contribution of Kaon pole, other multi hadron
states (denoted by others), and OPE to the total spectrum integral I follow the same
notation for the weight functions in these parameters as

• C (center value of weights),

• ∆ (separation of the pole position),

• N (the number of the poles).
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•

Left	:		Ratios	of	each	contribution	of	V/A	with	spin=0,	1	to	the	total	residue.	
										(Lattice)	
Right:	Ratios	of	each	decay	modes	to	total	cross	section.	(Experiments)	
											rest	:	multi	π	channels,	K	η	
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• N=4,			Δ=0.1	[GeV^2]
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L = 48, a�1 = 1.73[GeV], m� = 0.139[GeV]• Experiment



0 0.5 1 1.5 2
C [GeV2]

0.0001

0.001

0.01

0.1

1

ra
tio

Π
(1):V

Π
(0):V

Π
(1):A

Π
(0):A

0 0.5 1 1.5 2
C [GeV2]

0.0001

0.001

0.01

0.1

1

Ra
tio

Kaon pole
K π
rest
pQCD

•

• N=5,			Δ=0.1	[GeV^2]

• For	larger	N	with	smaller	Q^2,		Kaon	pole	is	the	most	dominant	contribution.	
• pQCD	and	rest	modes	are	highly	suppressed.
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L = 48, a�1 = 1.73[GeV], m� = 0.139[GeV]• Experiment



• |Vus|	can	be	determined	from	K	pole	channel	only	(exclusive	mode).		
• Since	τ	->	K	decay	mode	is	dominated	by	axial	spin	=	0	channel,		
			so	we	have		

• We	can	also	determine	|Vus|	using	all	inclusive	decay	modes	and	lattice	results;

|Vus|	from	lattice	HVPs
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|V K�pole

us | from	L=48	lattice	at	physical	quark	mass

K	pole:	determined	from	fK	(K	decay	constant)	

|Vus|	is	universal	and	consistent	with	fK	determination	(mild	dependence	of	C,	N)	

Our	result	suggests	:	A0	channels	is	dominated	by	K	pole		

(Excited	mode	contributions	and	lattice	discretization	error	are	small		

	in	this	momentum	region.)

N	:	number	of	poles



|Vus|	from	other	channels

• A0	channel	is	dominated	by	K	pole.	
• How	about	other	channels?			
• Lattice	HVPs	for	A1,	V1,	V0				<	-	>	multi	hadron	states	&	pQCD			
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V1	+	V0	+	A1:		Result	in	the	continuum	limit	using	L=48	and	L=64	lattice	data.	

(We	omit	mK	and	mπ	mass	correction,	which	are	multi	hadron	states	and	less	sensitive	to	the	
quark	mass	compared	to	single	K	state.			

For	larger	C	>	1	region,	|Vus|	is	different	from	K	pole	determination.		

Is	it	due	to	large	uncertainties	from	pQCD?	(Remember	ratio	analysis.)

|Vus|		:	weight	function	with	N=3

preliminary
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V1	+	V0	+	A1:		consistent	with	K	pole	determination	with	larger	error.		

Full	result	(V1	+	V0	+	A1+A0)	is	stable	against	the	change	of	C.

|Vus|		:	weight	function	with	N=4
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The	error	becomes	larger	due	to	noisy	signal	of	vector	channels	(multi	hadron	states).	

Full	result	is	competitive	with	the	result	of	K	pole	determination.

|Vus|		:	weight	function	with	N=5

preliminary



Summary



Summary
Precise	determinaxon	of	CKM	matrix	elements	is	very	important.	

We	have	demonstrated	how	the	inclusive	τ	decay	experiments	and	the	layce	
observables	can	be	related,	from	which	we	can	determine	the	CKM	matrix	
element	|Vus|.	

Thanks	to	the	physical	point	layce,	we	can	obtain	bezer	signal	from		
A0	channel,	whose	grand	state	is	K	which	is	most	sensixve	to	the	quark	mass	
among	four	channels.	
From	A0	analysis,	we	obtain	an	universal	value	of	|Vus|.		
This	result	suggests	that	excited	states	contribuxons	and	discrexzaxon	error	are	
negligible	for	A0	channel.	
		
We	also	found	discrepancy	between	K	pole	determinaxon	and	other	channels	in	the	case	
of	N=3,	where	OPE	become	to	dominantly	contribute	to	total	decay	rate.	
N=4,	5	the	results	are	consistent	with	K	pole	determinaxon,	but	larger	staxsxcal	error.		

Several	systemaxc	uncertainxes	need	to	be	invesxgated,	e.g.	quark	mass	effect	near	
physical	point,	sea	quark	mass	effect,	perturbaxve	OPE.	



Thank	you



Backup



Fourier	decomposition	of	residue
function for the Fourier transformation, the lattice calculation of the residues could suffer
from the dominant finite size t effect. As given in Eq. 12, the residue is also given as a
sum of each t contribution (we denote it F̃ (0/1):V/A(t).) Thus F̃ (0/1):V/A(t) can be given as
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In Fig. 11, F̃ is plotted. In the case of L = 48, T = 96, the value of F̃ for each channel is
suppressed in large t region ∼ T/2. On the other hand, the result for L = 32, T = 64 has
a sub-dominant contribution even in t = T/2 in particular for Π(0):A, by which the result
for L = 32 may suffer from a large finite size t effect. In order to see such a finite size
effect, we calculate the sum of F̃ over t, which defined as

G̃(1/0):V/A(t) =
t
∑

l=−t

F̃ (1/0):V/A(l). (16)

Fig. 13 shows G̃(t) for each channel of Π(1/0):V/A(t). The plateau for each channel can be
found in the case of 48I, 64I, and 24I lattice results. However, the data for Π(0):V and
Π(0):A channels in 32I can not reach plateau region. In order to avoid a large finite size
effect in L = 32, we have to take a large Q2 region in the weight function. We should
also note that even for the data on L = 48, and 64, a finite size effect can not become
negligible if we take a small Q2 with larger N , since using such a weight function the
dominant contribution becomes a longer distance part of Π(t). As another example, in
Fig. 14 and Fig. 15, we show the results of F̃ and G̃ with a weight function with N = 5
of (Q2

1, Q
2
2, Q

2
3, Q

2
4, Q

2
5) = (0.05, 0.1, 0.15, 0.2, 0.25). This weight function can still work for

48I and 64I, whose results seem to have a plateau for each channel, however the results
for 24I and 32I become even worse.
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Comparison	of	unitary	and	PQ-corrected	data	on	L=48

PQ-corrected	data

unitary	

Only	A0	has	visible	difference	(Kaon),		
other	channels	are	consistent	with	each	other	(quark	mass	effect	
is	negligible	for	multi	hadron	states).
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48

3 ⇥ 96 m⇡[GeV] mK [GeV]

unitary 0.139 0.499

PQ-corrected 0.135

†
0.4937

†

Effective	residue
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Continuum	limit	of	V1+V0+A1

Continuum	extrapolation	by	a^2	linear	fit	using	L=48	(PQ)	and	L=64.

vol. a�1
[GeV ] m⇡[GeV] mK [GeV]

48

3 ⇥ 96 1.730(4) 0.135 0.4937

64

3 ⇥ 128 2.359(7) 0.139 0.508


